58 research outputs found

    BonFIRE: A multi-cloud test facility for internet of services experimentation

    Get PDF
    BonFIRE offers a Future Internet, multi-site, cloud testbed, targeted at the Internet of Services community, that supports large scale testing of applications, services and systems over multiple, geographically distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to provide an infrastructure that gives experimenters the ability to control and monitor the execution of their experiments to a degree that is not found in traditional cloud facilities. The BonFIRE architecture has been designed to support key functionalities such as: resource management; monitoring of virtual and physical infrastructure metrics; elasticity; single document experiment descriptions; and scheduling. As for January 2012 BonFIRE release 2 is operational, supporting seven pilot experiments. Future releases will enhance the offering, including the interconnecting with networking facilities to provide access to routers, switches and bandwidth-on-demand systems. BonFIRE will be open for general use late 2012

    A unifying orchestration operating platform for 5G

    Get PDF
    5G will revolutionize the way ICT and Telecommunications infrastructures work. Indeed, businesses can greatly benefit from innovation introduced by 5G and exploit the new deep integration between ICT and networking capabilities to generate new value-added services. Although a plethora of solutions for virtual resources and infrastructures management and orchestration already exists (e.g., OpenDaylight, ONOS, OpenStack, Apache Mesos, Open Source MANO, Docker Swarm, LXD/LXC, etc.), they are still not properly integrated to match the 5G requirements. In this paper, we present the 5G Operating Platform (5G-OP) which has been conceived to fill in this gap and integrate management, control and orchestration of computing, storage and networking resources down to the end-user devices and terminals (e.g., smart phone, machines, robots, drones, autonomous vehicles, etc.). The 5G-OP is an overarching framework capable to provide agnostic interfaces and a universal set of abstractions in order to implement seamless 5G infrastructure control and orchestration. The functional structure of the 5G-OP, including the horizontal and vertical interworking of functions in it, has been designed to allow Network Operators and Service Providers to exploit diverse roles and business strategies. Moreover, the functional decoupling of the 5G-OP from the underneath management, control and orchestration solutions allows pursuing faster innovation cycles, being ready for the emergence of new service models

    A unifying operating platform for 5G end-to-end and multi-layer orchestration

    Get PDF
    Heterogeneity of current software solutions for 5G is heading for complex and costly situations, with high fragmentation, which in turn creates uncertainty and the risk of delaying 5G innovations. This context motivated the definition of a novel Operating Platform for 5G (5G-OP), a unifying reference functional framework supporting end-to-end and multi-layer orchestration. 5G-OP aims at integrated management, control and orchestration of computing, storage, memory, networking core and edge resources up to the end-user devices and terminals (e.g., robots and smart vehicles). 5G-OP is an overarching architecture, with agnostic interfaces and well-defined abstractions, offering the seamless integration of current and future infrastructure control and orchestration solutions (e.g., OpenDaylight, ONOS, OpenStack, Apache Mesos, OpenSource MANO, Docker, LXC, etc.) The paper provides also the description of a prototype that can be seen as a simplified version of a 5G-OP, whose feasibility has been demonstrated in Focus Group IMT2020 of ITU-T

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks
    • 

    corecore